Synthesis, Characterization and Antimicrobial activity of Some Schiff Bases of 2-Amino-4-(4-Acetamido Phenyl)thiophene-3-carboxamide  

 

Monica Arora*, J. Saravanan, S. Mohan, Shivaji Bhattacharjee

Department of Pharmaceutical Chemistry, PES College of Pharmacy, Bangalore-50, Karnataka, India.

*Corresponding Author E-mail: monicaarora15@gmail.com

 

 

ABSTRACT:

2-Amino-4-(4-acetamido phenyl) Thiophene-3carboxamide was synthesized using versatile Gewald reaction .First step is preparation of cyanoacetamide which was carried out by condensation of ammonia (25%) and ethyl cyano acetate which was then reacted with p-acetanilido acetophenone, sulphur, diethyl amine to give 2-Amino-4-(4-acetamido phenyl) thiophene-3carboxamide.Later the compound was treated with twelve different substituted aryl aldehydes to yield twelve new Schiff bases(SM 1a-1l). The compounds were characterized IR, 1H NMR and mass spectral data and screened for antimicrobial activity.

 

KEY WORDS Synthesis, Thiophenes, Schiff bases, Spectral analysis, Antimicrobial activity.

 


 

INTRODUCTION:

Among the heterocyclic compound sulphur containing moieties have attracted maximum attention as they have several pharmacological activities as antimicrobial1,2,3,4, CNS depressant activity5, analgesic6, antitumor7,ant-inflammatory8,antioxidant activity9 and so on. Similarly Schiff base derivatives also have been reported to possess biological activity as antimicrobial 10,11. The therapeutic importance of these rings prompted us to synthesize novel benzo(b)thiophene and their Schiff base derivatives, characterize the compound by IR, NMR and Mass spectroscopic techniques and evaluate them for their antimicrobial activity.

 

MATERIAL AND METHODS

Chemicals:

Ammonia (25%), ethyl cyanoacetate, p-amino acetophenone, acetic anhydride, sulphur, diethyl amine, 4’-dimethyl amino benzaldehyde, 3’,4’5’-trimethoxy benzaldehyde, 3’,4’-dimethoxy benzaldehyde, 4’- methoxy benzaldehyde, 4’-hydroxy 3’-methoxy benzaldehyde, 4’-hydroxy 3’-methoxy benzaldehyde, 4’-hydroxy benzaldehyde, 2’-nitro benzaldehyde, 3’- nitro benzaldehyde, 4’-nitro benzaldehyde,  2’-chloro benzaldehyde, 2’- hydroxy benzaldehyde, 4’-chloro benzaldehyde were obtained from local dealer. All other chemical used were of laboratory grade.

 

Preparation of 3-(acetamidophenyl)-2-cyano but-2-enamide

Cyanoacetamide was prepared by cold condensation of ammonia and ethyl cyano acetate (1:1), ◦this is further reacted with p-acetanilido acetophenone which is prepared by acetylation of p-amino acetophenone which is done by acetic anhydride in presence of glacial acetic acid. Cyanoacetamide was refluxed with equimolar quantity of p-acetanilido acetophenone, ammonium acetate(1gm) and glacial acetic acid (2ml) in benzene (100 ml) for 12 hours in dean stark apparatus with continuous separation of water. After 12 hours the reaction mixture was cooled, diluted with 10 ml of benzene and washed with sodium carbonate solution (10%w/v in water ) and water successively and dried over anhydrous sodium sulphate. The solvent was removed under vacuum and the intermediate crude product obtained was immediately processed for the next step.

 

Preparation of 2-amino-4-(4-acetamidophenyl) thiophene-3-carboxamide.SM-1:

To a mixture of 3-(acetamido phenyl)-2-cyano butenamide in alcohol (40ml) and sulfur (1.28gm) at 50oC , diethyl amine (7ml) was added drop wise with stirring. The reaction mixture was stirred for further 3 hours at same temperature. The reaction mixture was directly used for further derivatization.

 

Preparation of 2-[(substituted benzylidene)amino] 4-(4-acetamidophenyl) thiophene-3-carboxamide.SM-1a-l:

A mixture of equimolar amount (0.01) of 2-amino thiophenes, benzaldehyde derivatives (a-l) in ethanol (40ml) along with catalytic amount of glacial acetic acid was refluxed for 4 hours. The reaction mixture was concentrated cooled, the solid obtained was filtered and recrystallized from ethanol to give Schiff base (SM-1a-l). It was obtained 55-60% yield.

Antimicrobial studies

All the synthesized compounds were screened for their antibacterial and antifungal activity by agar diffusion method 12 at a conc of 50µg/ml against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella pneumonia, Aspergillus niger and Candida albicans. After 24 hours of drug addition, zone of inhibition was measured and recorded. Ampicillin, Norfloxacin and Mecanazole nitrate at 50µg/ml were used as standards in the experiment.


 

Scheme



Table -1 Physical data of 2-amino-4-(4-acetamidophenyl) thiophene-3-carboxamide SM-1

Comp

Code

Molecular

Formula

M.W(g)

Recrystalization

Solvent

M.P(oC)

%Yield

TLC Solvent

Rf Value

SM-1

C13H29N3O2S5

339

2-propanol

   170

40

Methanol: Chloroform(9:1)

0.66

 

Table-2 Physical data of 2-[(substituted benzylidene)amino] 4-(4-acetamidophenyl) thiophene-3-carboxamide SM-1a-l

Comp Code

X

Molecular Formula

M.W (g)

M.P (oC)

% Yield

T.L.C Solvent

Rf Value

SM-1a

4’- dimethyl    amino benzaldehyde

C22H22N4O2S

406.2

200

52

Methanol: Chloroform (9:1)

0.49

SM-1b

3’4’5’–trimethoxy benzaldehyde

C29H47N3O5S

453.3

209

72

Methanol: Chloroform (9:1)

0.72

SM-1c

3’4’–dimethoxy benzaldehyde

C22H21N3O4S

423.7

185

58

Methanol: Chloroform (9:1)

0.62

SM-1d

4’-methoxy benzaldehyde

C21H19N3O3S

393.2

192

67

Methanol: Chloroform (9:1)

0.57

SM-1e

4’ –hydroxy  3 methoxy benzaldehyde

C21H19N3O4S

409.7

185

51

Methanol: Chloroform (9:1)

0.70

SM-1f

4’-hydroxy benzaldehyde

C20H17N3O3S

379.1

225

55

Methanol: Chloroform (9:1)

0.49

SM-1g

2’-nitro benzaldehyde

C20H16N4O4S

408.2

208

50

Methanol: Chloroform (9:1)

0.50

SM-1h

3’-nitro benzaldehyde

C20H16N4O4S

408.2

212

57

Methanol: Chloroform (9:1)

0.47

SM-1i

4’ –nitro benzaldehyde

C20H16N4O4S

408.2

215

57

Methanol: Chloroform (9:1)

0.33

SM-1j

2’- chloro benzaldehyde

C20H16ClN3O2S

397.5

175

71

Methanol: Chloroform (9:1)

0.70

SM-1k

2’ – hydroxy benzaldehyde

C20H17N3O3S

379.1

190

55

Methanol: Chloroform (9:1)

0.65

SM-1l

4’ –chloro benzaldehyde

C20H16ClN3O2S

397.5

180

69

Methanol: Chloroform (9:1)

0.69


 


Table-3 Spectral data of 2-amino-4-(4-acetamidophenyl) thiophene-3-carboxamide SM-1

Comp Code

λmax. (nm)

IR

1 H NMR

SM-1

155

 3397 cm-1 (NH);1697 cm-1 (C=O); 3144 cm-1 (Ar-CH); 1530 cm-1 (ArC=C);

770.72 cm-1 (C-S)

8.1(s,1H of CONH- )7.6(s,2H of NH2 of amide)7.3-7.5(m,2H of aromatic H)7.2-7.4(m,2H of aromatic )6.4(s,1H of  thiophene)5.5(s,2H of NH2)2.2(s,3Hof CH3)

 

Table-4 Spectral data of 2-[(substituted benzylidene) amino] 4-(4-acetamidophenyl) thiophene-3-carboxamide SM-1a-l

X

λ max

(nm)

 IR

1 H NMR

Mass

4’- dimethyl    amino benzaldehyde

 

3387.98cm-1 (NH); 3455.06 cm-1  (Ar-CH,Str)2924.88cm-1(Ali-CH)  1616.78cm-1 (C-N, imine, Str); 1466.83 cm-1 (C=C,Ar, Str); 1311.66 cm-1 (C=N); 1713.75 cm-1 (C=O). 750.50 cm-1  (C-S).

 

 

3’4’5’–trimethoxy benzaldehyde

290

3402.98cm-1 (NH); 3417.98 cm-1  (Ar-CH, Str)2923.10cm-1(Ali-CH)  1616.52 cm-1 (C-N, imine  Str); 1454.38 cm-1 (C=C,Ar  Str);  1126 cm-1.47(C-O-C Str); 1387.77 cm-1 (C=N); 1713.75 cm-1 (C=O).  713.75 cm-1 (C-S).

8.2(s,2H 1H of CONH- ,1H of N=CH)7.6-7.8((m,2H aromatic H) 7.5-7.6(m,4H aromatic H) 7.1(s,2H NH2 of amide) 6.9 (s,1H of thiophene) 3.9(s,9H of –OCH3) 2.1(s,3H of CH3)

453

3’4’–dimethoxy benzaldehyde

249

3476.12 cm-1  (NH); 3327.98 cm-1  (Ar-CH,Str) 2808.19cm-1(Ali-CH)  1670.12 cm-1 (C-N, imine Str); 1504.08 cm-1 (C=C,Ar  Str);  1092.76 cm-1 (C-O-C Str); 1267.59 cm-1 (C=N); 1612.32 cm-1  (C=O) ;776.42 cm-1 (C-S).

8.4(s,2H 1H of CONH- ,1H of N=CH)7.3-7.5((m,2H aromatic H) 7.5-7.6(m,4H aromatic H) 7.4(s,2H NH2 of amide) 6.7 (s,1H of thiophene) 3.5(s,6H of –OCH3) 2.0(s,3H of CH3)

423

4’-methoxy benzaldehyde

269

3072.33 cm-1  (NH); 3217.09 cm-1  (Ar-CH Str) 2808.19cm-1(Ali-CH)  1676.65 cm-1  (C-N, imine Str); 1498.08 cm-1  (C=C,Ar, Str);  1126.47 cm-1  (C-O-C Str); 1387.77 cm-1  (C=N); 1713.75 cm-1   (C=O). 713.75 cm-1   (C-S)

 

 

4’ –hydroxy  3 methoxy benzaldehyde

271

3301 cm-1  (OH); 3242.33 cm-1   (NH); 3111.00 cm-1   (Ar-CH,Str) 2908.10cm-1(Ali-CH)  1599.65 cm-1  (C-N, imine, Str); 1432.61 cm-1  (C=C,Ar, Str);  1016.74 cm-1  (C-O-C Str); 1299.01 cm-1  (C=N); 1671.50 cm-1  (C=O). 701.83 cm-1   (C-S)

8.6(s,2H 1H of CONH- ,1H of N=CH)7.5-7.7((m,2H aromatic H) 7.8-7.9(m,4H aromatic H) 7.4(s,2H NH2 of amide) 6.9 (s,1H of thiophene)6.2(s,1Hof OH) 3.8(s,3H of –OCH3) 2.3(s,3H of CH3)

 

4’-hydroxy benzaldehyde

247

3348.54 cm-1  (OH);

3276.31 cm-1  (NH); 3101.00 cm-1   (Ar-CH,Str); 2899.67cm-1(Ali-CH)  1599.65 cm-1  (C-N, imine, Str); 1432.61 cm-1  (C=C,Ar, Str);1299.01 cm-1  (C=N); 1671.50 cm-1   (C=O). 701.83 cm-1   (C-S)

8.4(s,2H 1H of CONH- ,1H of N=CH)7.5-7.7((m,2H aromatic H) 7.8-7.9(m,4H aromatic H) 7.4(s,2H NH2 of amide) 6.6 (s,1H of thiophene)6.2(s,1Hof OH)  2.3(s,3H of CH3)

433

2’-nitro benzaldehyde

253

3222.01 cm-1 (NH); 3001.04 cm-1   (Ar-CH,Str); 2911.07cm-1(Ali-CH)  1609.55 cm-1  (C-N, imine, Str); 1502.91 cm-1 1348 cm-1 (NO2);(C=C,Ar, Str);1309.66 cm-1  (C=N); 1654.43 cm-1   (C=O). 754.73 cm-1 (C-S)

 

 

3’-nitro benzaldehyde

219

3526.01 cm-1 (NH); 3001.00 cm-1   (Ar-CH,Str); 2998.06cm-1(Ali-CH)  1609.55 cm-1  (C-N, imine, Str); 1502.91 cm-1 1350 cm-1 (NO2);(C=C,Ar, Str);1377.66 cm-1  (C=N); 1603.99cm-1   (C=O). 699.03 cm-1 (C-S)

 

 

4’ nitro benzaldehyde

209

3526.01 cm-1 (NH); 3001.00 cm-1   (Ar-CH,Str); 2998.06cm-1(Ali-CH)  1609.55 cm-1  (C-N, imine, Str); 1502.91 cm-1 1350 cm-1 (NO2);(C=C,Ar, Str);1377.66 cm-1  (C=N); 1603.99cm-1   (C=O). 699.03 cm-1 (C-S)

 

 

2’ –chloro benzaldehyde

289

3322.01 cm-1 (NH); 3001.00 cm-1   (Ar-CH,Str); 2998.06cm-1(Ali-CH)  1609.55 cm-1  (C-N, imine, Str); 1502.91 cm-1 1350 cm-1 (NO2);(C=C,Ar, Str);1377.66 cm-1  (C=N); 1603.99cm-1   (C=O);702cm-1 (C-Cl)778.53 cm-1 (C-S)

 

 

2’ –hydroxy benzaldehyde

249

3408.54 cm-1  (OH);3246.01 cm-1 (NH); 3043.00 cm-1   (Ar-CH,Str); 2876.06cm-1(Ali-CH)  1622.21 cm-1  (C-N, imine, Str); 1521.91 cm-1 1321.00cm-1 (NO2);(C=C,Ar, Str);1321.21 cm-1  (C=N); 1609.06cm-1   (C=O). 776.03 cm-1 (C-S)

 

 

 

4’ –chloro benzaldehyde

220

3246.01 cm-1 (NH); 3043.00 cm-1   (Ar-CH,Str); 2876.06cm-1(Ali-CH)  1622.21 cm-1  (C-N, imine, Str);(C=C,Ar, Str);1321.21 cm-1  (C=N); 1609.06cm-1   (C=O);741cm-1 (C-Cl);776.03 cm-1 (C-S)

8.4(s,2H 1H of CONH- ,1H of N=CH)7.8-7.9((m,2H aromatic H) 7.7-7.6(m,4H aromatic H) 7.3(s,2H NH2 of amide) 7.0(s,1H of thiophene)  1.5(s,3H of CH3)

 


 


Table-5 Antimicrobial activity of 2-amino-4-(4-acetamidophenyl) thiophene-3-carboxamide SM-1

Comp Code

S.aureus

B.subtilus

E.coli

K.pneumonia

A.niger

C.albicans

SM-1

15

14

12

12

16

--

Ampicillin

22

17

24

18

--

--

Norfloxacin

23

28

26

28

--

--

Miconazole

--

--

--

--

30

27

 

Table -6 Antimicrobial activity of  2-[(substituted benzylidene)amino] 4-(4-acetamidophenyl) thiophene-3-carboxamide SM-1a-l

Comp Code

S.aureus

B.subtilus

E.coli

K.pneumonia

A.niger

C.albicans

4’- dimethyl    amino benzaldehyde

12

14

12

--

15

--

3’4’5’–trimethoxy benzaldehyde

20

17

--

14

13

--

3’4’–dimethoxy benzaldehyde

15

14

--

14

14

--

4’-methoxy benzaldehyde

14

14

15

17

17

08

4’ –hydroxy  3 methoxy benzaldehyde

20

16

19

15

18

09

4’-hydroxy benzaldehyde

21

18

16

18

17

10

2’-nitro benzaldehyde

13

12

11

10

12

--

3’ –nitro benzaldehyde

12

11

10

10

11

--

4’ –nitro benzaldehyde

14

12

13

--

14

--

2’ –chloro  benzaldehyde

21

18

18

19

18

09

2’ –hydroxy benzaldehyde

22

16

19

16

17

09

4’ –chloro benzaldehyde

23

19

20

17

19

11

Ampicillin

22

17

24

18

--

--

Norfloxacin

33

28

26

28

--

--

Miconazole

--

--

--

--

30

27

 

 


 

RESULTS:

From the antibacterial activity results it was observed that both electron donating and electron withdrawing groups on the aldehydic phenyl ring of the compounds influenced the activity. Among the drugs tested for antimicrobial activities Table 5, Table 6 showed that compounds SM-1e, SM-1f, SM-1j, SM-1k, SM-1l exhibited potent activity by showing zone of inhibition ranging from 14mm-22mm.All these drugs showed potent activity against Staphylococcus aureus  with high zone of inhibition. All other drug showed drugs showed moderate inhibititory properties against the test organism. Against Candida albicans none of the test drugs showed significant activity. Standard drugs, Ampicillin, Norfloxacin and Mecanazole nitrate exhibited potent inhibitory properties against all the test organism.

 

DISCUSSION:

From the IR, 1H, NMR and mass spectrum obtained, characterization of data has been done and given in table 1, 2, 3 and 4. The IR spectrum of 2-amino-4-(4-acetamidophenyl) thiophene-3-carboxamide (SM-1) shows NH2 peak at3397 cm-1.The NMR spectrum shows a broad peak at δ =5.5 of NH2.

 

The IR spectra of all the Schiff bases shows the disappearance of NH2 peak and the appearance of –N=CH (Imine) peak at the range of 1640-1690 cm-1 which clearly suggest the formation of expected compounds. The NMR spectra of the compounds SM-1b,SM-1c, SM-1e,SM-1f and SM-1l shows sharp singlet peak at the range of δ =8.2-8.8 of –N=CH (Imine)  which also further confirms the formation of the compounds of the series. The compounds SM-1b.SM-1c and SM-1f were also confirmed by Mass spectrum.                                                                                         

 

ACKNOWLEDGEMENTS:  

The authors are thankful to Management, PES college of Pharmacy for providing necessary facilities.

 

REFRENCES: 

1.       Senthil Kumaran et al. Synthesis characterization and antimicrobial activity of some thiophene derivatives. J of Pharm Res 2012; 5(2):1067-69.

2.       Saravanan J et al. Synthesis of some 3-substituted amino-4,5-tetramethylene thieno[2,3-d][ 1,2,3]-triazin-4(3H)-        ones as potential antimicrobial agents. Eur  J Med Chem  2010;45:   4365-4369.

3.       Srivastava S et al. Synthesis and evaluation of some novel thiophenes as potential antibacterial and mycolytic agents. Der.Pharma Chemica 2011;3(6):103-11.

4.       Gouda M A et al. Synthesis and anti microbial activity of some new thiazole and pyrazole derivatives based on 4,5,6,7 tetra hydro thiophene moiety . Eur J Med Chem.2010; 45:826-31

5.       Bhattacharjee S et al. Synthesis ,Charaterization and CNS depressant activity of some schiff bases of 2-amino-4-(4-chlorophenyl) thiophene-3 carboxamide. Asian J of Res Chem.2011;4(10):1562-65.

6.       Isloor A M et al. Synthesis characterization and biological activities of some new benzo[b] thiophene derivatives. Eur J Med Chem.2010; 45:825-30.

7.       Asmaa A et al. New synthesis of tetra hydro benzo[4,5] thieno [2,3d] pyrimidine derivatives and schiff bases derived from 2-aminotetrahydro benzothiophenes and hetro arylcarboxyaldehydes studies on their antitumour and antimicrobial activities. Available from URL: http://idosi.org/wjc/ 4(2)/2009/4(2);112-117.

8.       Shridhar M et al Microwave accelerated Gewald reaction: synthesis of 2-amino thiophenes. Tetrahedron Letters 2007; 48:5261-64.

9.       Barot H K et al. Synthesis of Thiophene Compounds of Pharmacological Interest. Asian J Research Chem.2010; 3(4):1065-68.

10.     Kavitha P.N et al. Microwave assisted synthesis, charaterization and antimicrobial activity of some schiff bases of 2-amino (4-chlorophenyl) thiazoles. Asian J Research Chem.2010;3(3) :751-54.

11.     Patel R N et al. Synthesis and Antibacterial Study of Some New Schiff’s Bases of 2-Hydrazinyl-1-(1H-Imidazole-I-Yl)-Ethanone. Asian J Research Chem.2011; 4(1):55-57.

12.     Barry A L, Antimicrobial susceptibility test, principle and practices (Illus lea and fehinger, Philedepephia USA) 1976, pp 93-108.

 

 

 

Received on 30.10.2012        Modified on 07.11.2012

Accepted on 14.11.2012        © AJRC All right reserved

Asian J. Research Chem. 5(11): Nov., 2012; Page 1360-1364